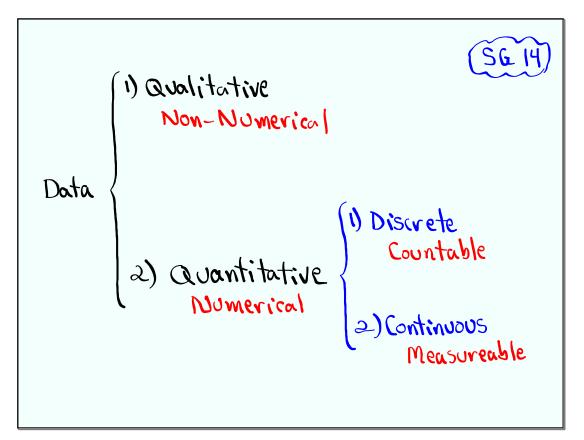


Feb 19-8:47 AM



Let ∞ be a discrete random variable with Prob. List. P(x). Acountable Prob. dist. provides prob. of all Possible outcomes. Prob. dist. can be 1) in the form of a chart or table 2) in the form of a graph 3) in using some formule. 4) we could find it by concept of Prob.

Oct 18-11:35 AM

Some rules:
1)
$$0 \le P(x) \le 1$$

2) $\ge P(x) = 1 \implies \text{Sum of all prob.} = 1$
3) $P(x) = 1 \iff \text{Sure event}$
4) $P(x) = 0 \iff \text{Impossible event}$
5) $0 \le P(x) \le .05 \iff \text{Rare event}$

Oct 18-11:43 AM

Consider the chart below
Sor discrete random Variable
2 with prob. dist.
$$P(X)$$
: 1) Sind $P(X=4)$
2 $P(X)$ =1-[.15+.25+.4]
1 .15
2 .25
3 .4
2) Find $P(X=2 \text{ or } X=3)$
= .25
4 .2 2) Sind $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
3) Find $P(X=2 \text{ or } X=3)$
= .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .4 = .65
- .25
+ .2 = .25
+ .2 = .2 = .25

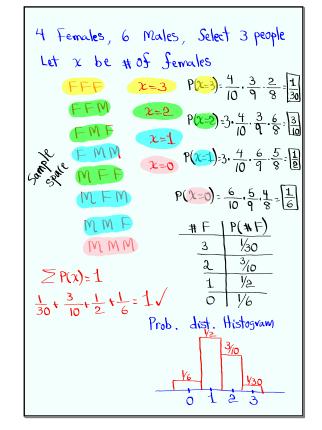
= Coins, No replacement = Coins, No replacement $\Rightarrow 104 P(104) = \frac{3}{5} \cdot \frac{2}{4} = \frac{6}{20} = .3$ $\Rightarrow 154 P(154) = 2$ A piggy bank has 2 Dimes = 3 Nickels $D D \rightarrow 20 \notin P(20 \notin) = \frac{2}{5} \cdot \frac{1}{4} = \frac{2}{20} = \cdot 1$ Total & P(Total 4) P(Total is 10¢ or 20¢) 10 .3 = .3 + .1 = .4 15 .6 Prob. dist. histogram So

Oct 18-11:56 AM

Complete the chart below 1) Verify $\geq P(x) = 1$ $\frac{\chi}{\chi} = P(x) \frac{\chi}{\chi} \frac{\chi^2 P(x)}{\chi^2 P(x)}$ $\cdot 3 + \cdot 5 + \cdot 2 = 1 \sqrt{2}$ 1 .3 .5 23 .5 $-3) \geq \chi^2 p(x) =$ 4) (ompute $22p(x) - (2xp(x))^2 + 2.0 + 18 = 4.1$ = 4.1 - 1.9² = .49 5) Jlast Ans. = J.49 = .1

Complete the chart below 1) Verify $\geq P(x)=1$ $x \mid P(x) \mid x P(x) \mid x^2 P(x)$ $\cdot 1 + \cdot 2 + \cdot 4 + \cdot 3 = 1/$ ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 ·1+.2+.4 1. .1 1 5. .4 2 3 .4 1.2 $3) \sum \chi^2 p(\chi)$ 4.8 1.2 •3 4 2 [9.3] 4) Compute $\sum \chi^2 p(x) - (\sum \chi p(x))^2$ = 9.3 - 2.9² = .89 5) $\sqrt{10st Ans} = \sqrt{.89} \approx .943$ 6) $P(\chi \neq 1) = 1 - P(\chi = 1)$ Total = 1 - .1 = .9 Prob

Oct 18-12:12 PM

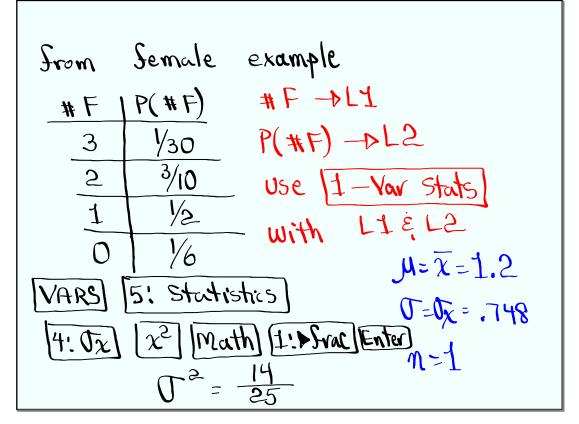


Oct 18-12:21 PM

Mean (mu) $J = \sum x p(x)$ Variance $\sigma^2(sigma^2)$ Standard dev. J (Sigma) J J= JJ2 from earlier example x + P(x) $y = \sum x P(x)$.2 = 1(.2)+2(.5)+3(.3)=2.1 1 $\frac{1}{1000} = 1(10) + 2(10) +$ 2 =1²(.2)+2²(.5)+3²(.3)-2.1² = .49 $0 = \sqrt{0^2} = \sqrt{.49} = .71$ $M = \overline{\chi} = 2.1$ Now Using TI: $x \rightarrow L1$, $P(x) \rightarrow L2$ Use 1-Var Stats n=1 = Total Prob. with L1 & L2 $\sigma^{2}_{=.49}$ VARS 5: Statistics (4: Jz) (22) Enter

Oct 18-12:47 PM

from 2-Coin example Total 4 | P(Total 4) Total - PL1 •3 P(Total) -PL2 10 15 • 6 Use 1-Var Stats 20 .1 with L1 & L2 $\lambda = \overline{\chi} = 14$ 5: statistics VARS $T = 0\chi = 3$ 22 Enter 4: Jr n=1 $(T^{2}=9)$



Oct 18-1:04 PM

Consider the chart below x P(x) I) P(x=5) 2 $\frac{4}{5}$.2 a) P(2 < $\chi < 4$) =.1+.2+.3=.6 clear all lists $\chi \rightarrow L1$, $P(\chi) \rightarrow L2$ 3) find M & T, Round up to whole # 1-Var Stuts M= 7= 3.2 M=4 with $L1 \neq L2$ $\sigma = \sigma = \tau = 1.4$ $\sigma = 2$ Find C^2 in C^2 $C^$ VARS 5: Statistics 95%, Range 1+20 14: Jz 22 Math 1: Druc Enter =4+2(2) DO 108

Oct 18-1:09 PM

Expected Value I sold 25 TKts @\$10 each \$\$250 I am giving away a Calc. => \$100 Net Profit \$150 Net (P(Net) 10-100 V25 winning Net Prosit/TKT ĪKŤ 10-0 24/25 Losing TKts

Oct 18-1:20 PM

You are going on a trip. You pay \$50 to insure your luggage Any damages, Airline pays you \$1000 .002 Prob. of any damage is 62%. Sind expected value per policy Sold. $\Box = \mathcal{E}_{\mathcal{N}} = \mathcal{I} = \overline{\chi}$ Net | P(Net) \$48 50-1000 .002 Damage 50 - 0 , 998 No Damage Net-AL1 Use (1-Var stats) P(Net)-ALZ with LIELZ

Pay me \$5 Draw one Card From a full-deck of playing Cards. If You Ivan an Are -> I give \$50 s ~ a face → I give \$10 v Any other card -> I give You P(Net) Net-AL1 Net Ale 4/52 RNet)-PL2 5 - 50 12/52 Fare Use 11-Var stats 5 - 10 Any other with LieL2 36/52 5 - 0Card E.V. = JI=X \$ -1.15

Oct 18-1:32 PM

(56.16) Binomial Prob. dist .: 1) n independent events (Trials) a) Each trial has two outcomes. P(Failure)=9 P(Success)=p P+9=1 9=1-P P& & remain unchanged for all trials. 3) x -> # of Successes n-x -> # of failures $P(x) = m^{c} x \cdot p^{x} \cdot q^{n-x}$ Lygives us how many ways we can have Combination x Successes. m^cr n choose r 5 C2=10 5 Math PRB mcn 2 enter 12 Math [PRB] m^Cr] 5 Enter 12°5 =792 50 Math PRB ncn 5 enter 50^C5 = 2,118,760

Oct 18-1:51 PM

Consider a binomial Prob. dist with

$$n = 10$$
 and $p = .6$
 $1)q = 1 - P$ = 2 $np = 10(.6) = 16$
 $= 1 - .6 = .4$
3) $npq = 10(.6)(.4)$ 4) $Jnpq = \sqrt{2.4}$
 $= 2.4$ ≈ 1.549
5) $P(x = 7) = 10^{C} - (.6)^{T} (.4)^{T} \approx .215$
 $n^{C} x \cdot p^{X} \cdot q^{n-X}$

Oct 18-2:01 PM

Consider a binomial Prob. dist with

$$n = 20$$
 é $P = .5$
 $19 = 1 - P$ 2) $np = 20(.5) = 10$
 $= 1 - .5 = .5$
3) npq 4) $npq = .5 \approx 2$
 $= 20(.5)(.5) = 5$ Round to whole n
5) $P(exactly 12 Successes)$
 $P(x = 12) = 20^{\circ} 12^{\circ} (.5)^{2} (.5)^{2} .120$
 $n^{\circ} \chi \cdot p^{\chi} \cdot q^{n-\chi}$
Using TI Command
(2 nd) VARS (J) Binom pdf
Trials: 20
 $P : .5$
 $2 - Value : 12$
Paste Enter

I flipped a loaded Corn 100 times

$$P(Tails) = .7$$

 $P(exactly 75 tails)$
 $x = 75$
 $P(x = 75) = binompdf(100, .7, 75)$
 $= .050$
 $P(at most 75 tails)$
 $x \le 75$
 $P(x \le 75) = binomcdf(100, .7, 75)$
 $= .886$

Oct 18-2:17 PM

You are taking a True-false exam
with 400 questions
Success is to correctly guess.
You are making random guess.

$$n = 400$$
 P=.5
P(guess correctly exactly 200)
 $\chi = 200$
P($\chi = 200$) = binompdf(400, .5, 200)
 $= .0398$
P($\chi \le 200$) = binomedf(400, .5, 200)
P($\chi \le 200$) = binomedf(400, .5, 200)

Class (<u>x</u>	Quíz 4 P(x)	find	
1	.20	N) M=2.9 ≈3	(Round to whole #
2	.15	2) (]= 1.221 ≈ 1	J whole #
3	•25 •35		2-1-1
5	• 05	$3)0^{2}(149)$	Reduced Fraction
	•		

Oct 18-2:31 PM